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Introduction 
 Correlation 

»   
» The volatilities of two variables can be high but if they are not perfectly 

correlated, some compensation or offsetting of their movements can take 
place. 

» Fields 
 Diversification in portfolio theory 
 Diversification of exposures in risk management 
 Can enable us to find ways to mitigate a fraction of our net risk exposure 

therefore enhancing our investment capacity 

 Copulas 
» Ways to define a correlation structure between two variables regardless of 

the shape of their probability distributions. 
» Useful for 

 Understanding some Basel II formulas 
 Modelling correlated defaults in loan/bond portfolios 
 Valuing credit derivatives on multi-entities 
 The calculation of economic capital 
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Definitions 
 Correlation between two variables V1 and V2, is defined as 

 

 

 The covariance is 

 

 
» And therefore 

 

 

» Although correlations are more intuitive than covariances, the latter will 
be our key variable in the analysis, a little bit like variances to volatilities in 
our last chapter. 
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Correlation vs. Dependence 
 Two variables are independent 

» If knowledge about one of them does not affect the probability 
distribution of the other one, i.e. 

 

 

 where f() is the probability density function 

 Independence is not the same as zero correlation! 
» Suppose V1 = –1, 0, or +1 (equally likely) 

» If V1 = -1 or V1 = +1 then V2 = 1 

» If V1 = 0 then V2 = 0 

 V2 is clearly dependent on V1 (and vice versa) but the coefficient of 
correlation is zero 

 Correlation measures one particular type of dependence 
between two variables: linear dependence. 
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Other forms of dependence 
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Monitoring correlation 
 Similar approaches to EWMA and GARCH for variance, but for 

covariances, can be used to monitor the evolution of covariances. 

 Define 

 

 The covariance on day n is 

 
» If the expected daily return for risk managers is 0, then the simplification 

made for variances can also be done for covariances 

 

» Using equal weighting for the last m observations, the correlation estimate 
on day n (calculated given data up to day n-1) is 
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Monitoring correlation (2) 
 EWMA 

 
» Example 

  = 0.95 
 Correlation between X and Y on day n-1: 0.6 
 Volatilities of X and Y are 1%, 2%. 
Covariance =  
 If %returns on day n of X and Y are 0.5% and 2.5% 
 2

x,n = 
 2

y,n = 
 covn = 
new correlation =  

 GARCH(1,1) 

 
» Some weight is given to 

 a long-run average covariance 
 the most recent covariance estimate 
 the most recent observation on covariance 
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Consistency condition 
 Variances and covariances for a set of variables produce a 

variance-covariance matrix () 

 Not all these matrices are internally consistent, cross correlation 
must be overall consistent. 
» An easy condition is to ensure that 

 

» for all N  1 vectors w. The matrix is said to be positive-semidefinite. 

 Make sure you compute variances and covariances accordingly. 
» Variances and covariances must be updated using the same method 

(simple, EWMA, GARCH(1,1), etc...) 

» Making changes to var-covar matrices is dangerous if we manipulate a 
large number of variables, because it is not obvious that our matrix is still 
positive-semidefinite. 
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Multivariate (normal) distributions 
 Can be useful to express the correlation structure between 2 

variables (even if they are not normal) 
» Consider a bivariate normal distribution of V1 and V2. 
» Conditional on knowing a realization v1 of V1, the value of V2 is normal 

with mean 
 
 

» and standard deviation 
 
 

 Advantages 
» Many variables can be handled. 
» A variance-covariance matrix defines the variances of and correlations 

between variables. 
» To be internally consistent a variance-covariance matrix must be positive-

semidefinite. 
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Factor models 
 Sometimes, it is particularly appreciable to use a factor model to 

describe the correlation structure between normally distributed 
variables 
» With N variables, we only need N parameters instead of N(N  1) / 2 

correlations without any factor model. 

 In a 1-factor model (such as the market model), each variable Ui 
has a standard normal distribution and is represented as a 
mixture of a common factor F and some specific randomness 
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Factor models (2) 
 Representation of the multi-factor model 
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Copulas - Introduction 
 Consider two random variables V1 and V2, each with its own 

marginal (or unconditional) distribution 

 Suppose now that we want to define a correlation structure 
between them to obtain a joint distribution 
» If they are normal, then we can assume a bivariate normal joint 

distribution (many other ways exist) 
» If not normal, unless we work with other well known marginal 

distributions, there is no natural way to do it. 

 We will use copula functions that allow us to map V1 and V2 into 
new variables for which we know some marginal distribution. 
» The mapping is performed on a percentile-to-percentile basis 
» It preserves the original marginal distribution of the original variables 

 Depending on which mapping we work, copulas take different 
names... 
» Gaussian copula: for a normal mapping 
» Student t-copula 
» Archimedean copulas (Product, Clayton,...) 
» The Deheuvels or empirical copula 
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The Gaussian copula 
 We transform V1 and V2 to new variables U1 and U2 that have a 

standard normal distribution on a “percentile-to-percentile” basis. 

 U1 and U2 are assumed to have a bivariate normal distribution. 

 

 

 

 

 

 

 

 

 We can find any joint probability that V1 and V2 are less than some 
specified values, by using the cumulative bivariate distribution with the 
mapped values U1 and U2 and the copula correlation. 
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The Gaussian copula (2) 
 Algebraically 

» F1 and F2  are the marginal distributions of V1 and V2 

» We map V1 = v1 to U1 = u1 and V2 = v2 to U2 = u2    where 

 

 

» This means that 

 

 

       1 1 1 2 2 2andF N u F N u v v

     1 1

1 1 1 2 2 2andu N F u N F  v v

14 H. Pirotte 



Student t-copula 

 5000 random samples from the 
bivariate normal 

 

 

 

 

 

 

 5000 random samples from the 
bivariate Student t 
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Factor Copula Model 
 In a factor copula model the correlation structure between the 

U’s is generated by assuming one or more factors. 
» Example 

» F and Zi have standard normal distributions 

» Other factor copula models can be obtained by choosing F and Z to have 
other zero-mean unit-variance distributions: 

 If Zi is normal 

 And F is Student t-distributed 

 Mutivariate Student t-distribution for the U’s 
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Application to loan portfolios 
 The credit default correlation between two companies is a 

measure of their tendency to default at about the same time 
» Default correlation is important in risk management when analyzing the 

benefits of credit risk diversification 
» It is also important in the valuation of some credit derivatives 
» We will present a one-factor Gaussian copula used by Basel II 

 The Model 
» Portfolio of N companies 
» Ti (i = 1..N) is the default hitting time of company i 
» The cumulative distribution of Ti is Qi. 
» We map the time to default for company i, Ti, to a new variable Ui 

assuming 
 

» The mappings imply 
 

» when 
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Application to loan portfolios (2) 
 Conditional on knowing F, we have 

 

 

 

2

1

2

1

Prob( )
1

Hence

( )
Prob( )

1

Assuming the 's and 's are the same for all companies

( )
Prob( )

1

In a large portfolio the 1-  percenti

i
i

i

i i

i

i

i

U a F
U U F N

a

N Q T a F
T T F N

a

Q a

N Q T F
T T F N

X









 
  
  

 
  
  

 
   

  

 1 1

le of  gives the % worst case 

percentage of losses in time T

( ) ( )
( , )

1

F X

N Q T N X
WCDR T X N





  
  

  

18 H. Pirotte 



Application to loan portfolios (2) 
 Example 

» The average yearly probability of default on every loan of a portfolio of 
loans is 2% 

» The expected recovery upon default is 40% 

» The copula correlation parameter is estimated at 10% 

» In this case 
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